Partitioning a Segment Notes Sheet

Partitioning a segment means that you are going to take a line segment and break it into equal parts and then find a point that is a specific distance between those points. We will be using the slope to find this.
Find the coordinates of the point P that lies along the directed line segment from $A(3,4)$ to $B(6,10)$ and partitions the segment in the ratio 3 to 2 .

A Convert the ratio to a percent.
Point P is $\frac{3}{3+2}=\frac{3}{5}$ of the distance from A to B.
This is \qquad \% of the distance from A to B.

B Find the rise and run for $\overline{A B}$.
Rise $=10-4=6$
Run $=$ \qquad

C The slope of $\overline{A P}$ must be the same as the slope of $\overline{A B}$.

So, to find the coordinates of P, add \qquad $\%$ of the run to the x-coordinate of A and add \qquad $\%$ of the rise to the y-coordinate of A.
x-coordinate of $P=3+\quad \cdot 3=$ \qquad
y-coordinate of $P=4+\quad$. $=$ \qquad

So, the coordinates of P are \qquad .

Guided Practice

Find the coordinates of the point P that lies along the directed segment from $J(-2,5)$ to $K(2,-3)$ and partitions the segment into the ratio 4 to 1 .

Your Turn
Find the coordinates of the point P that lies along the directed segment from $R(-3,-4)$ to $S(5,0)$ and partitions the segment into the ratio 2 to 3 .

Use the map and the information given to solve each problem that follows.

	y								Theater													
	20		Brad																	choo		
	19																					
	18																					
	17																					
	16									Coffe	ee \$	\$hop										
	15																					
	14													D	dave'	's D	oork	knob	os			
	13																					
	12																					
U	11		Clev			okie		re														
\sim	10																					
	9																					
	8																					
	7											BII										
	6																					
	5						Ima															
	4																	Kalle	eb			
	3																					
	2																					
	1					Malk																
-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	314	15	16	17	18	19	20	x
	-1										A	ven	$\mu \mathrm{e}$									

Guided Practice

Cleve's Cookie Store is located at the corner of 2nd Avenue and 9th Street. Dave's Doorknobs is located at the corner of 12th Avenue and 14th Street. Located $1 / 5$ of the distance from Cleve's Cookie Store is the post office. Where is the post office?

Your Turn
Luis works at a theater on 8th Avenue and 20th Street. Kaleb lives at the corner of 18th Avenue and 4th Street. What is a possible location that is midway between them?

