Geometry Finals Review Notes

Unit 6 - Quadrilaterals - Review

Summary of Unit:
In our most recent unit we worked with different quadrilaterals and learned their different properties. Make sure you know the distance formula, midpoint formula and slope for these questions!
Below are a few terms that you need to commit to your memory for your final.

Term	Definition
Quadrilateral	
Parallelogram	
Diagonal	
Rectangle	
Rhombus	
Square	
Trapezoid	
Isosceles Trapezoid	
Midsegment	
Kite	

Below are some examples of multiple choice type problems you could see based on concepts learned in unit 6.

As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is

1) 6
2) 10
3) 12
4) 24

Geometry Finals Review Notes

Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

In the diagram below, $E F$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?

1) 5
2) 2
3) 7
4) 8

Which reason could be used to prove that a parallelogram is a rhombus?

1) Diagonals are congruent.
2) Opposite sides are parallel.
3) Diagonals are perpendicular.
4) Opposite angles are congruent.

In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?

1) $\angle D A E \cong \angle B C E$
2) $\angle D E C \cong \angle B E A$
3) $\overline{A C} \cong \overline{D B}$
4) $\overline{D E} \cong \overline{E B}$

In rhombus $A B C D$, the diagonals $A C$ and $B D$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?

1) 7
2) 10
3) 13
4) 17

In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) 12
2) 78
3) 84
4) 156

Geometry Finals Review Notes

In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?

1) 7
2) 14
3) 19
4) 24

Given quadrilateral $A B C D$, which statement would allow the conclusion that $A B C D$ is a parallelogram?
A. $\angle A \cong \angle C$
B. $\overline{A D} \cong \overline{B C}$
C. $m \angle A+m \angle D=180^{\circ}$
D. $\overline{A D} \| \overline{B C}$

E. None of these

Which of the following statements is always true regarding a parallelogram?
A. The diagonals are perpendicular to each other.
B. The sum of the angles is 180°.
C. Opposite sides are both parallel and congruent.
D. There cannot be a right angle in any parallelogram.
E. Consecutive angles are complementary.

For the trapezoid shown below, the measure of the median is \qquad .

a. 29
b. 58
c. 25
d. 30

Geometry Finals Review Notes

For parallelogram $P Q L M$ below, if $m \angle P M L=83^{\circ}$, then $m \angle P Q L=$ \qquad .

a. $m \angle P Q M$
b. 83°
c. 97°
d. $m \angle O L M$

If $O N=6 x-2, L M=7 x+5, N M=x+4$, and $O L=7 y+4$, find the values of x and y given that $L M N O$ is a parallelogram.

a. $\quad x=\frac{1}{7} ; y=1$
b. $\quad x=-7 ; y=-1$
c. $\quad x=-3 ; y=-\frac{3}{7}$
d. $\quad x=\frac{1}{3} ; y=\frac{7}{3}$

Find the value of the variables in the parallelogram.

a. $\quad x=65^{\circ}, y=21^{\circ}, z=138^{\circ}$
b. $x=21^{\circ}, y=65^{\circ}, z=138^{\circ}$
c. $x=42^{\circ}, y=8^{\circ}, z=130^{\circ}$
d. $x=8^{\circ}, y=42^{\circ}, z=130^{\circ}$

Geometry Finals Review Notes

$L M N O$ is a parallelogram. If $N M=x+15$ and $O L=3 x+5$ find the value of x and then find $N M$ and $O L$.

a. $\quad x=7, N M=20, O L=22$
b. $x=5, N M=20, O L=20$
c. $x=7, N M=22, O L=22$
d. $x=5, N M=22, O L=20$

In parallelogram $D E F G, D H=x+3, H F=3 y, G H=4 x-5$, and $H E=2 y+3$. Find the values of x and y. The diagram is not to scale.

a. $x=6, y=3$
b. $x=2, y=3$
c. $x=3, y=2$
d. $x=3, y=6$

Lucinda wants to build a square sandbox, but has no way of measuring angles. Explain how she can make sure that the sandbox is square by only measuring length.
a. Arrange four equal-length sides so the diagonals bisect each other.
b. Arrange four equal-length sides so the diagonals are equal lengths also.
c. Make each diagonal the same length as four equal-length sides.
d. Not possible; Lucinda has to be able to measure a right angle.

Which description does NOT guarantee that a quadrilateral is a parallelogram?
a. a quadrilateral with both pairs of opposite sides congruent
b. a quadrilateral with the diagonals bisecting each other
c. a quadrilateral with consecutive angles supplementary
d. quadrilateral with two opposite sides parallel

